

SOFIVA GENOMICS

Stock Code 6615
Investor Conference

2025 / 12 / 17

Chairman
Yi-Ning Su, MD, Ph.D

Disclaimer

All statements for investors contain information that represent, other than historical facts, SOFIVA's plans and forward-looking statements are based upon management's current assumptions. Environmental changes and other important factors could cause actual results to differ materially from those expressed in our statements. Investors should carefully consider the investment objectives and risks before investing.

LDTs Certification

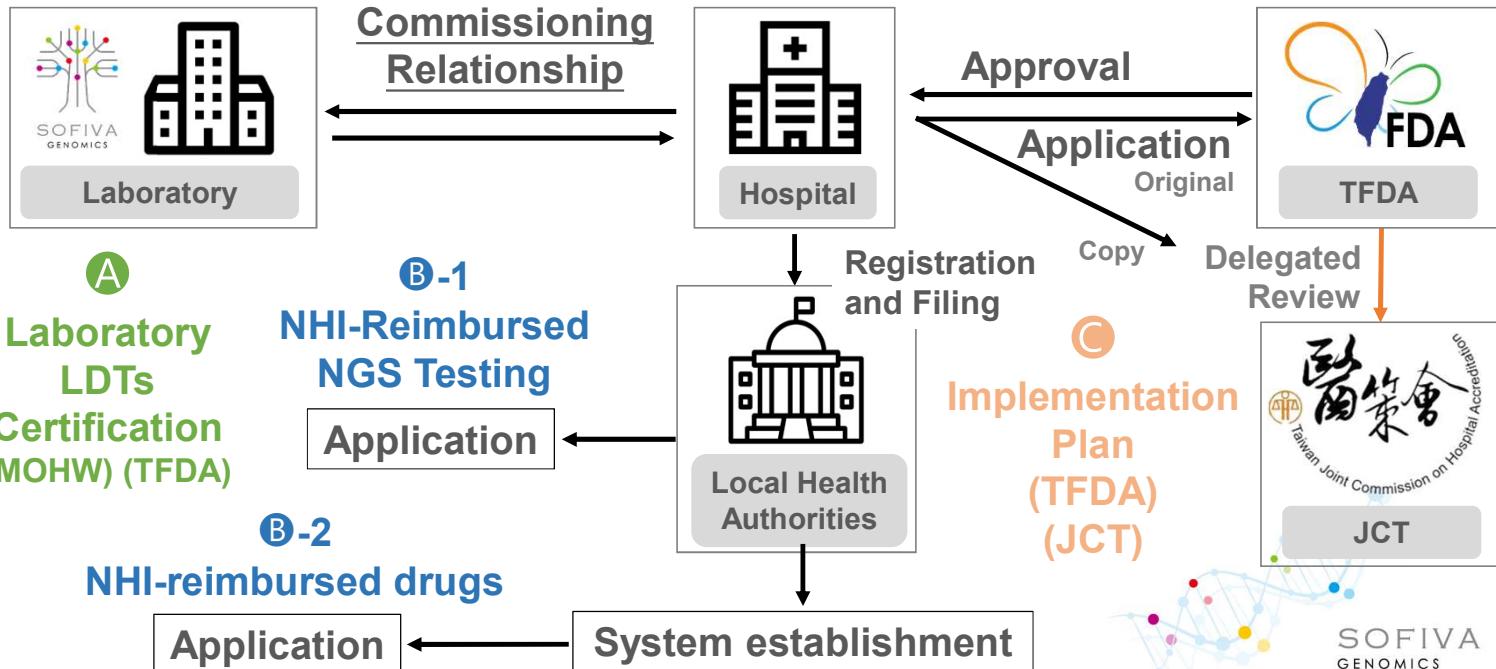
National-Level Accreditation

Laboratory Developed Tests (LDTs) Certification

MOHW LDTs Certification:

Three Strategic Safeguards Ensuring High-Quality Laboratory Developed Tests

- 1. Official Laboratory Certification:** Testing workflows, validation processes, and quality systems are conducted in accordance with TFDA regulatory standards.
- 2. Ongoing Government Audits and Oversight:** Supports long-term accuracy, analytical stability, and clinical reliability through periodic inspections.
- 3. Mandatory Review and Approval of Each Test Program:** Each LDT undergoes formal government review, approval, and ongoing regulatory oversight.


SOP
GENOM

Laboratory Developed
Tests (LDTs)

Clinically validated tests developed and performed by certified laboratories to support disease diagnosis and treatment decision-making, enabling precision-driven clinical care.

Laboratory Developed Tests and Services, LDTs

B NIH (MOHW) (Public Health Bureau)

SOFIVA: Market Leadership in LDTs Certification

衛生福利部食品藥物管理署
精準醫療分子檢測實驗室認證資料

機構名稱：慧智基因股份有限公司(地址：臺北市中正區重慶南路 1 段 66 之 1 號 4 樓之 2)

機構負責人：蘇怡寧

實驗室名稱：慧智基因醫學實驗室(地址：臺北市中正區寶慶路 27 號)

實驗室負責人：洪加政 (實驗室品質主管：林柏文)

認證編號：LDT0008

認證有效期間：114 年 10 月 20 日至 117 年 10 月 19 日止

37 LDTs Approved at Once
— No.1 in Taiwan

Reproductive

Prenatal

Newborn

Rare
Disease

Cancer

SOFIVA: Market Leadership in LDTs Certification

High-Quality Testing Across Multiple Disease Areas

Reproductive

- Preimplantation Genetic Testing for Aneuploidy (PGT-A)
- Non-Invasive Preimplantation Genetic Testing for Aneuploidy (niPGT-A)

Newborn

- SOFIVA Baby Scan v1.0
- Sensorineural Hearing Loss Genetic Testing
- Congenital Central Hypoventilation Syndrome Genetic Testing
- Congenital Cytomegalovirus Infection Testing
- Atopic Dermatitis Genetic Testing

Cancer

- SOFIVA Cancer Scan
- SOFIVA Cancer Risk-BRCA1/2

Prenatal

- SOFIVA NIPS v1.0 / v2.0 / v3.0
- SOFIVA Array v1.0
- SOFIVA Carrier Scan v1.0
- Spinal Muscular Atrophy Genetic Testing
- Fragile X Syndrome Genetic Testing
- Thalassemia Genetic Testing
- Folate Metabolism Genetic Testing

Rare Disease

- Hearing Loss Genetic Testing v1.0/v2.0/v3.0
- Genetic Testing for Short Tandem Repeats Analysis of Single Genes
- Genetic Testing for Gene Structure Analysis of Single Genes

Precision Medicine

- SOFIVA Cancer Genetic Testing-Basic Panel/Expanded Panel
- SOFIVA Cancer Monitor-BRCA1/2
- SOFIVA Cancer Scan-Lung Cancer
- SOFIVA Cancer Scan-Cholangiocarcinoma
- SOFIVA Cancer Scan-Breast Cancer
- SOFIVA Cancer Scan-Colon Cancer
- SOFIVA Cancer Scan-Urothelial Carcinoma
- SOFIVA HRR Testing
- SOFIVA HRD Testing
- SOFIVA CGP Cancer Genetic Testing
- Endometrial Cancer Genetic Subtypes
- Prostate Cancer Genetic Testing
- Microsatellite Instability Testing (MSI)

National-Grade Quality & Rigorous Standards

SOFIVA
GENOMICS
慧智基因

[Physician Confidence]

- ✓ Reliable
- ✓ Clinically Validated

SOFIVA
GENOMICS
Clinical Decision Support

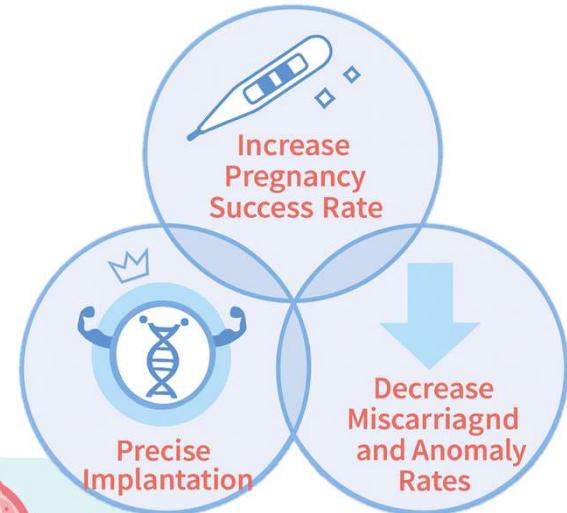
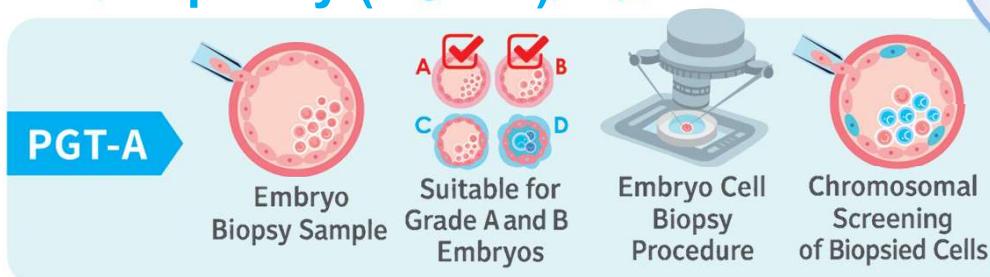
[Public Value]

- ✓ National-Level Standards
- ✓ Ongoing Oversight
- ✓ Quality Assurance

[Clinical Impact]

- ✓ Precision Medicine
- ✓ Informed Decisions

PGT-A



Next-Generation SNP Technology

PGTA-Chromosomal Screening for IVF Embryos

Infertility & Miscarriage

Preimplantation Genetic Testing for Aneuploidy (PGT-A)

PGT-A Improves Pregnancy Rates from 40% to 70%

Limitations of Morphology-Based Assessment

-IVF Process-

Morphology: Fertilization status is assessed based on pronuclear count

Fertilization Status	Morphology	Based on Morphology Alone	
	Pronuclear Count	PGT-A Eligible	Transfer Eligible
Normal fertilization (~90%)	2PN	V	Implantation potential based on PGT-A results
Abnormal fertilization (~10%)	1PN	X	Not Eligible
	3PN		
	2.1PN		

Reassessing Embryo Implantation Potential

JRI

The Frequency of Chromosomal Euploidy Among 3PN Embryos

Kresna Mutia¹, Budi Wiweko^{1, 2, *}, Pritta Amelia Iffamolda¹, Ririn Rahmala Febri¹, Naylah Muna¹, Oki Riyati¹, Shanty Olivia Jasirwan¹, Tita Yuninggih³, Eliza Mansyur³, Andon Hestiantoro^{1, 2, 3}

1- Human Reproductive, (IMERI), Faculty of Med
2- Division of Reproduct
tas Indonesia, Jakarta, In
3- Yasmin IVF Clinic, De

Original Article

PGT-A identified implantation potential in 33.3% of embryos initially classified as 3PN.

J Reprod Infertil. 2019 Jul-Sep;20(3):127-131.

Journal of Assisted Reproduction and Genetics (2023) 40:1765–1772
https://doi.org/10.1007/s10815-023-02830-y

EMBRYO BIOLOGY

Check for updates

Assessing the clinical viability of micro 3 pronuclei zygotes

Chelsea Canon^{1,2} • Anabel Thurman² • Albert Li² • Carlos Hernandez-Nieto² • Joseph A. Lee² • Rose Marie Roth² • Richard Slifkin² • Christine Britton-Jones² • Daniel Stein^{1,2} • Alan B. Copperman^{1,2}

Received: 9 September 2022 / Ac
© The Author(s), under exclusive

PGT-A identified implantation potential in 27.5% of embryos initially classified as 2.1PN.

J Assist Reprod Genet. 2023 Jul;40(7):1765-1772.

SOFIVIA
GENOMICS

Journal of Assisted Reproduction and Genetics (2024) 41:3357–3370
https://doi.org/10.1007/s10815-024-03278-4

GENETICS

Check for updates

Incidence of haploidy and triploidy in trophectoderm biopsies of blastocysts derived from normally and abnormally fertilized oocytes

Laura Girardi¹ • Cristina Patassini¹ • Jose Miravet Valenciano² • Yoshimi Sato³ • Natalia Fagundes Cagnin⁴

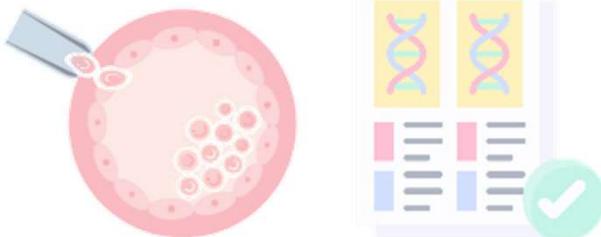
Journal of Assisted Reproduction and Genetics (2024) 41:3357–3370

Accepted: 10 October 2024

Editorial review: 10 October 2024

Revised: 10 October 2024

© The Author(s) 2024


PGT-A reclassified approximately 1% of embryos initially considered 2PN as abnormal (e.g., 1PN or 3PN).

J Assist Reprod Genet. 2024 Dec;41(12):3357-3370.

Summary of PGT-A-Based Reclassification

Morphology	PGT-A	Reclassification Rate
3PN	2PN	33.3%
2.1PN	2PN	27.5%
2PN	1PN/3PN	1%

Next-Generation PGT-A SNP Technology

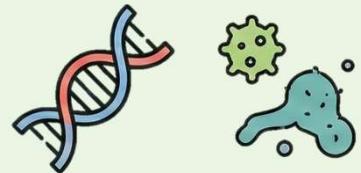
-PGT-A-

Using Next-Generation Sequencing (NGS) overcomes the limitations of morphology-based assessment and refines embryo implantation potential

Fertilization Status	Morphology-Based		PGT-A (SNP)	Transfer Recommendation
	Pronuclear Status	Limitations		
Normally Fertilized (≈90%)	2PN	~1% risk of chromosomal abnormalities	V	Implantation potential is assessed based on PGT-A results
Abnormally Fertilized (≈10%)	1PN 3PN 2.1PN	~30% of potentially viable embryos missed by morphology	V	Identification of ~30% additional embryos with implantation potential

Highlights of Next-Generation SNP Technology

Chromosomal Status Assessment


Supports improved pregnancy outcomes

Parental Origin Verification

Ensures accurate sample identification

DNA Quality Assurance

Ensure accurate interpretation

**A Widely Discussed Emerging Trend in
Reproductive Medicine**

Global Collaboration

Partnering with Baylor Genetics (USA)

BAYLOR GENETICS

Leading Medical Institutions in the United States

Global Leadership in Rare Disease Diagnosis and Research

Hundreds of Thousands of Patients Tested Annually

Strong Institutional Ties with Baylor College of Medicine

BAYLOR GENETICS

45+

Years of Innovation

4M+

Clinical Tests Performed

30+

PhDs, MDs, Certified Lab Directors, and GCs

1M+

Families Helped

50

States

Advancing Precision Medicine Worldwide Through Research, Clinical Practice, and Technology

Strategic Collaboration. Expanded Services.

- ✓ Internationally Accredited Genetic Testing Laboratory
- ✓ Clinical Support for Medical Decision-Making
- ✓ Integrated Genetic Counseling Services
- ✓ Expertise in Rare Genetic Disease Diagnosis

Preconception

Carrier Scan

SOFIVA
GENOMICS

Prenatal

Non-invasive Prenatal Screening (NIPS)

Rare Diseases

Whole-Exome
Sequencing (WES)
Whole-Genome
Sequence (WGS)

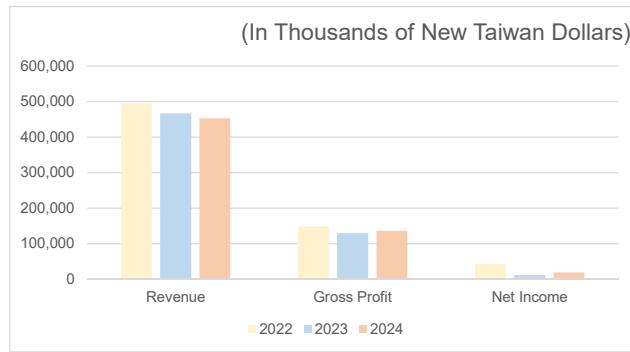
Three Key Highlights

LDTs Certification

National-Level LDTs
Certification in Taiwan

SNP Technology

Advancing PGT-A to
the Next Generation


Global Collaboration

In collaboration with Baylor
Genetics (USA)

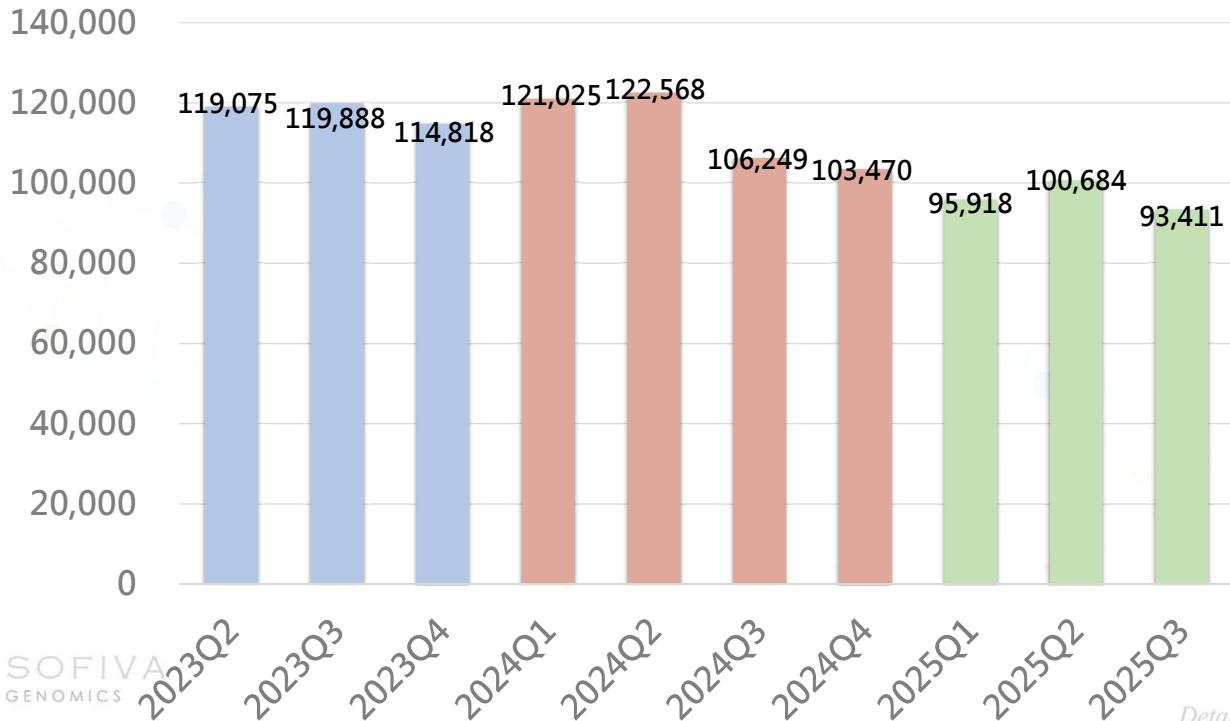
Operating Performance

Operational Performance

Statements of Comprehensive Income of last 3 years

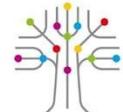
(In Thousands of New Taiwan Dollars)

	2022	2023	2024
Revenue	495,775	466,797	453,312
Gross Profit	148,988	129,908	135,661
Gross Profit (%)	30.05%	27.83%	29.93%
Operating Income	3,787	-15,882	-3,373
Total Non-Operating Income	43,562	24,785	26,988
Pre-Tax Income	47,349	8,903	23,615
Net Income	43,153	11,923	19,128
EPS	2.00	0.54	0.86


小細節 大不同

Details Make Differences

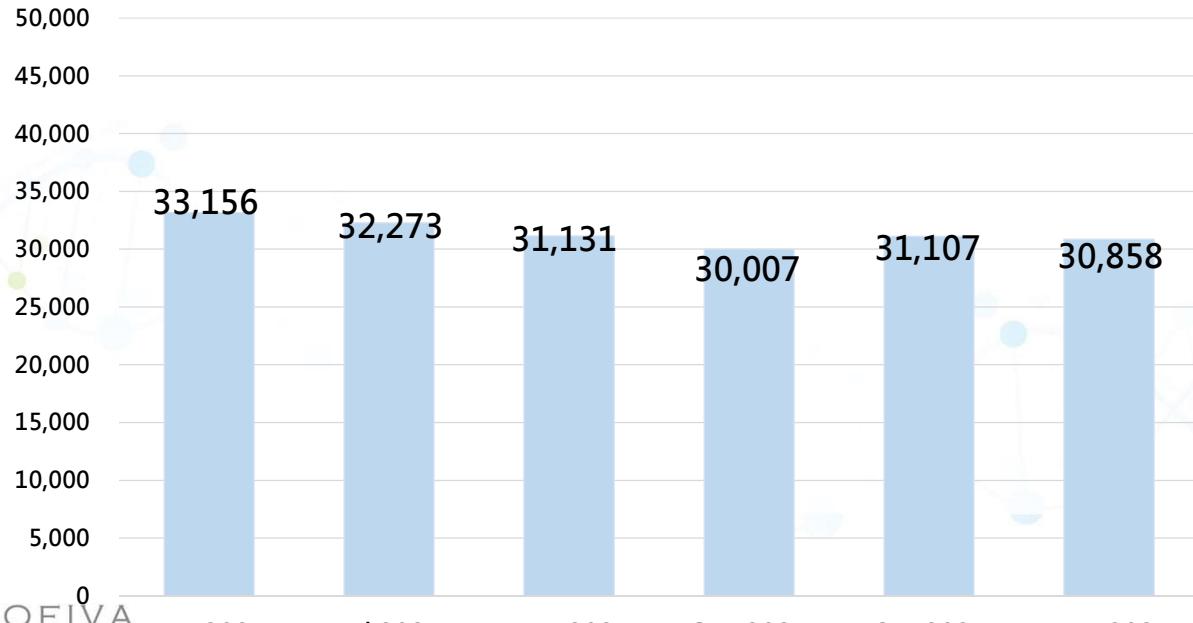
Revenue Trend : The Last 10 Quarters


(In Thousands of New Taiwan Dollars)

Revenues of Last 10 Quarters

小細節 大不同

Details Make Differences



SOFIVA
GENOMICS

Revenue Trend : The Last 6 Months

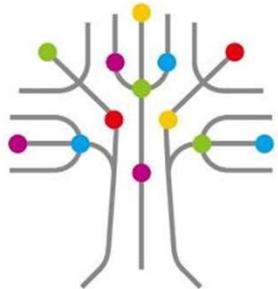
(In Thousands of New Taiwan Dollars)

Revenues of Last 6 Months

SOFIVA
GENOMICS

Details Make Differences

小細節 大不同


Investment Performance

(In Thousands of New Taiwan Dollars)

DIANTHUS CO.,Ltd

Statements of Comprehensive Income

	2022	2023	2024
Sales Revenue	689,795	695,831	803,024
Comprehensive Income	253,022	142,929	153,057
Capital Stock	895,000	895,000	895,000
Investment from Sofiva	148,250	148,250	148,250
Shareholding Ratio of Sofiva	16.56%	16.56%	16.56%
Investment Income of Sofiva	41,902	23,671	25,348

SOFIVA
GENOMICS

慧智基因股份有限公司
www.sofiva.com.tw
T +886-2-2382-6615
F +886-2-2382-6617
100台北市中正區寶慶路27號

Thank you!

小細節 大不同

Details Make Differences